NUMERICAL CALCULATION OF OPPOSING JETS OF
A VISCOUS INCOMPRESSIBLE LIQUID

P. 8. Kuts and V. A. Dolgushev UDC 532.522.2

The collision of two equal coaxial jets is studied. A numerical solution of the exact equa-
tions of motion and of continuity is obtained on the assumption that the isothermal flow is
stationary and the properties of the liquid are constant.

For the calculation of two-dimensional flows of a viscous incompressible liquid the authors in [1]
constructed an implicit finite difference system with which numerical experiments were conducted on
flows in a square having openings symmetrical relative to the axes. The equations were computed for
Reynolds numbers Re = 100 and 1000. Instability of the solution was found when Re = 1000; it reacted very
strongly to small changes in the boundary conditions. The flow which was used as the test to determine
the stability of the method of solution is of practical interest, since such jets are often encountered in
engineering, such as jet stabilization of a flame in fast streams [2], combustion of solid, gaseous, or
liquid fuel in furnaces with opposing burners of the shock type [3, 4], and with dehydration of solutions
and thermal treatment of dispersed materials in apparatus having opposing jets [5, 6, 7, 12].

In the present report a solution is found for the problem of the collision of two coaxial round jets
of a viscous incompressible liquid discharging with equal velocities from tubes of the same diameter having
flanges at the ends and located very close to one another (end to end). In the mathematical formulation of
the problem we use the complete Navier — Stokes equations transformed into stream and vortex functions
without eliminating any of their terms (since because of the complexity of the hydrodynamics such elimina-~
tion of terms is difficult to justify correctly enough). An explicit finite-difference system constructed
on the basis of the results of [8] is proposed for the numerical solution of the system of equations. In the
formulation of the problem and the construction of the calculation system principal attention was paid to
the stability of the solution,

From the physical arrangement it is seen that the problem is axially symmetrical and its solution
should be conducted in a eylindrical coordinate system. The distance measured along the axis of symmetry
from the center of the gap formed by the tubes is designated as x, while the distance from the axis of the
tube in the radial direction is designated as r. We limit the region of study to a rectangle symmetrically
encompassing both tubes and the space between them. We assume that the velocity distribution profile is
parabolic at the entrances and the exit. To reduce the problem to dimensionless form we normalize x and
r in the original system of Navier —Stokes equations using ¢, u, v—uy, and P —pu%. Then we obtain the
well-known equations of motion
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is the Reynolds number, and the equation of continuity
I3} d ’
2 (r)=0. (4)
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We assume that x varies in the region —x, = x =< +x,, while the gap occupies the subregion -x; = x
=< +xy. Then one can write the following boundary conditions:

a) at the entrance

(= xg; )= (1—7r), (5)
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b) at the exit
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or

for —x, = X = +x1, where v, is determined from the law of conservation of mass of the liquid
! "1
S 1 (xy; ryrdr = s v{x; 1)dx. {9)
o i
Since the exact profile of the boundary conditions at the exit is unknown, several variants of it were
examined. In particular, at the cut of the gap we examined the profiles (7) and v(x; 1) = v;/ujand at a
certain distance away from the cut of the gap along the flanges the profile

v(x; 2) = vyju, (1 —(x/x,)).

The numerical experiments showed that in all the cases compared the structure of the flow in the
scale of the region studied varies little, with the streamlines shifting slightly to one side or the other from
those corresponding to Fig. 2. The fact that the width of the gap is small compared with the diameter of the
dispersion tubes obviously has an effect. However, the conditions of (7) are the most acceptable from con-
siderations of stability of the problem and the feasibility of a reasonable simplification within the limits of
the accuracy of the description, and are conformed by the experimental data [13] obtained by El'perin;

¢) at the wall
u(x; V=0, ov(x; 1)=0 (10)

for —x; = X = —x¢ and +X; = X = X,

The assigning of the pressure distribution at the boundary is complicated in internal problems and
therefore we will change from the system of equations (1)-{4) to equations in vortex and stream functions,
which do not contain the pressure. According to (4), a stream function ¢ (x; r) exists for which
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Determining the vortex velocity w' by the equation

o = L (Eﬁ,i”), (12)
r or ox
we obtain
oy . O VS
— 2 =2 e 13
ax*  ort ' r o 1)

1551



‘ 1<(<in L X 15/ < /n

Fig. 1. Diagram showing the region of integration, the grid,
and the variables used in the problem.

Differentiating (1) and (2) with respect to x and r, respectively, and subtracting one equation from the

other, we -obtain
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Equations (13) and (14) must be solved for the unknown functions ¢ and w'.

In the subsequent discussion it is necessary to use functions in grid coordinates. Keeping in mind
that under the conditions of the problem the dimensions of the gap are considerably smaller than the di-
mensions of the sections of the tubes under consideration, we introduce a grid which is nonuniform along
the x axis, bunching together from the periphery to the center (Fig. 1). The grid remains uniform along
the r axis.

Let us convert the boundary conditions from the functions u and v to the functions ¢ and w':

a) at the entrance ,‘p(_ i ry= 0_5(,.2_ 0.5r%), (15)
Y+ X5 1) =—P(— %5 1)

Then it follows from Egs. (56), (6), and (12) that

o (— Xy 1) =—2, (17)
0 (5 Xy 1) =—0"(— X4 ). (18)
Similarly we obtain the following equations:
b) at the exit
Pix 1) =2 x ((x/x1)2—1—— 1) , : (19)
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c) at the wall
P(x; 1) = sign(x)$ (% 1),

where

sign (x) = —1, if x<<0,
g = 1, i x>0

At the points (—x;; 1) and (+xy; 1) the boundary conditions undergo a discontinuity, which is due to the phys-
ical problem.

Certain complications arise in writing the boundary conditions for w' at the wall, and «' is not
assigned directly but derived from an expansion of ¢ is a Taylor series.

Let us use one of the equations obtained in [9] which preserves the stability of the problem:

3

PR (Pi,in — i,jn—) — 0.50; (22)

@, jn =
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where Arjy = Irjp —rjn-1 Is the step along the r axis;
d) at the axis of symmetry
Vi, 1= Pi,0 (23)
the equation for w' is obtained from the condition that w' = const at the axis of symmetry and has the form
W, | =0, (rz—r})/(r_3 —1y) (0] ,—®] 5). {24)

The system (13)-(14) with the boundary conditions (15)-(24) was solved numerically by the grid method.
A uniform locally single-compartment difference system in which all the spatial derivatives were approxi-
mated by the central differences with an error 0% [10] was initially selected for the solution of the system
(13)-(14). However, the numerical experiments showed that this system is unsuitable for a boundary prob-
lem in which the convection terms of the equations have large coefficients while the boundary conditions
which are different from zero along the entire boundary vary strongly, since stability of the solution was
achieved only for small Reynolds numbers Re = 10. Henceforth we used for the calculations a conservative
uniform finite-difference system constructed by the integro-interpolation method and based on ideas de~
veloped in [8-11]. So that the difference system would provide the possibility of obfaining a solution for high
Reynolds numbers, in its construction the convection terms were approximated by one-sided differences
instead of central differences, with the direction of motion of the liguid being taken into account to improve
the conservativity of the system.

In the difference form the system (13)-(14) is written in the form
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Here it was assumed with respect to the stream function ¥ that its value at intermediate points is equal to
the arithmetic mean of the values at the four adjacent nodes, for example,

1 ‘ ‘ ‘
V1= (B s g e < bepni)s
2" 2

where i +1/2, j + 1/2 are intermediate points of the grid.

The system of difference equations (25)-(26) was solved by the Seidel iteration method. As the first
approximation we took either ¢j j = ' i,j= —0.01 sign (x) or the solution obtained with any other value of the
parameter of the process. After each {teration step the boundary values were calculated for the vorticity
and for the stream function at the axis of symmetry. Having obtained the solution of Egs. (13)-(14), we
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Fig. 2. Streamlines for Re = 10 (2) and Re = 10% (b).

determine the distribution of the velocities u and v from Egs. (11) and we obtain 9P /8x or 8P /dr from
(1)-(2) and the pressure from the recurrent equation

oP oP \ '’
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The calculations were conducted on a 43 x 20 grid which was nonuniform along the x axis, 23 of the
nodes being assigned in the subregion of the gap —x; = X = +x;. In the assignment of the nodes we were
constrained to observe the condition that the ratio of sizes of adjacent intervals did not exceed about 1.5
or else distortion of the pattern was observed and on the curve, which should be smooth, bends appeared
which were the larger, the more strongly this condition was violated. It did not seem possible to obtain
results on a uniform grid since the width of the gap would become comparable with the step of the grid.

A comparison of the results on 43 X 20 grids with different distributions of the nodes and with control
results on a 63 x 30 grid showed that the discrepancies are insignificant. In the numerical experiments

it was considered that the iteration process had converged when the maximum relative change in the vari~
ables between successive iterations was less than 0,005, and this took 200-400 iterations or 2-4 h depend-
ing on the operating parameters of the Minsk-32 electronic computer in the mode of compatibility.

In the problem Re and x; were analyzed and the following experiments were set up: with x; = const
= 0.2 the Reynolds number was varied in the range of 1 = Re = 10%, and with Re = const = 66,000 we varied
x; in the range of 0.2 = x; = 0,08.

Streamline patterns are presented in Fig. 2 for x; = 0.2 and Re = 10 (a) and Re = 108 (b).

The flow structure obtained theoretically agrees qualitatively with the general flow structure which
can be expected on the basis of experimental data. As is seen from the figures, the motion in the chamber
has a layered nature and the presence of vortices was not observed. With an increase in the Reynolds
number the streamlines are slightly deformed in the direction of the surface of contact between the jets.

In the collision of two jets of equal diameter having the same velocities the contact surface consists
of a plane located perpendicular to the axes of the jets.
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Fig. 3. Pressure distribution along chamber axis @)
and at the surface of collision of the jets (b) in the form
® /Pref) 1.
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The pressure distribution over the chamber is interesting, especially in the region of mutual contact
of the jets, and is characterized by considerable pressure gradients both in the direction of the chamber
axis (Fig. 3a) and in the perpendicular plane when x; = 0.2 (Fig. 3b). Graphs of the pressure distribution
along the chamber for the parameters x; = 0.2 and 0.08 and Re = 66,000 are shown in Fig, 3a.

The numerical experiments showed that the pressure variation in the tubes does not depend on the
distance between them. Bringing the ends of the pipelines closer together leads to an increase in the
pressure only in the zone of contact between the jets, the border of which is comparable with the width
of the gap-outlet. The pressure increases linearly in the tubes upon approach to the contact surface, it
increases more sharply in the zone of contact between the jets, and finally reaches its maximum value
at the critical point.

In conclusion, it should be noted that the method of solution used showed satisfactory stability, How-—
ever, the results obtained for large Reynolds numbers must be approached with caution since a fictitious
diffusion, which somewhat distorts the exact solution, shows up as a general defect of methods which use
one-sided differences.

NOTATION

is the density of liquid;

is the kinematic viscosity;

is the dynamic viscosity coefficient;
is the radius of tube;

is the velocity in axial direction;

is the velocity in radial direction;
is the hydrodynamic pressure;

is the initial velocity;

is the length of chamber.
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